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The global behavior of fusion plasmas in magnetic confinement devices is critically asso-

ciated to large-scale mean flows. In particular, toroidal flows impact both turbulent transport,

through the saturation of turbulence by sheared flows; and MHD stability by increasing the

threshold for the onset of resistive wall modes. In view of predicting the toroidal rotation in

future fusion devices such as ITER, where external momentum input will be small, accurate

simulations of momentum transport are crucial.

We investigate the turbulent transport of toroidal momentum using gyrokinetic simulations.

In order to validate this approach, we first show that the gyrokinetic model, as formulated by

Brizard and Hahm1 and implemented in gyrokinetic codes, provides a local conservation equa-

tion for toroidal angular momentum. This equation is verified numerically using the full- f ,

global gyrokinetic code GYSELA in the flux-driven regime2. Thus gyrokinetic simulations pro-

vide an appropriate description of toroidal momentum transport. This allows us to study the

turbulent generation of toroidal rotation. This process is shown to be dominated by the turbu-

lent Reynolds stress, and is strongly correlated to heat transport. Finally, the role of boundary

conditions is investigated, in order to study the effect of scrape-off-layer and edge flows on core

toroidal rotation.

Conservation of toroidal angular momentum in gyrokinetics

We consider the gyro-averaged guiding-center distribution function F̄(z) in the coordinate

system z = (χ,θ ,ϕ,vG‖,µ). χ is the opposite of the poloidal magnetic flux, θ and ϕ are the

poloidal and toroidal angles, vG‖ is the parallel velocity and µ is the magnetic moment, which

is an adiabatic invariant. The equilibrium magnetic field is axisymmetric: B = I∇ϕ +∇ϕ×∇χ .

The gyrokinetic equation for each species s can be written in its conservative form1:

∂t F̄ +
1

B∗||
∇z ·

(
żB∗||F̄

)
= C (F̄) (1)

where ż = dtz. B∗|| = B + mvG‖/eb · (∇×b) is the Jacobian of the gyrocenter transformation.

Details of the collision operator C (F̄) are not critical as long as it verifies Boltzmann’s H-

theorem and the conservation of particles, momentum and energy. We consider only electro-

static turbulence. The self-consistent model is obtained by coupling Eq. (1) to the gyrokinetic
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quasi-neutrality equation

−∑
s

∇ ·
{neqms

B2 ∇⊥φ
}

= ∑
s

es

∫
2πB∗||dµdvG‖J · F̄ (2)

where J is the gyro-averaging operator and neq is the equilibrium density of guiding-centers. In

the case considered here, electrons are taken into account in the adiabatic asymptotic limit.

In the gyrokinetic ordering, the toroidal canonical momentum is Pϕ = msuϕ − eχ where we

define uϕ = I
BvG‖. If the system is axisymmetric, Pϕ is an exact motion invariant. When axisym-

metry is broken by turbulence, dtPϕ =−e∂ϕ φ̄ . Considering the expression of Pϕ , it is consistent

to define the local gyrocenter toroidal momentum as Lϕ = ∑s ms
∫

dτ∗uϕ F̄ where
∫

dτ∗ corre-

sponds to the integration over all phase-space variables other than χ . As Pϕ differs from the

canonical momentum of particles only by terms of order O(ρ2
∗ ), where ρ∗ is the ion thermal

gyroradius normalized to the minor radius of the tokamak, the gyrocenter momentum Lϕ is

equivalent to the particle (and thus “physical”) toroidal momentum at the ρ∗ ordering of the

gyrokinetic model. From Eq.(1), we obtain

∂tLϕ +∂χΠχ
ϕ +∂χTχ

ϕ = J (3)

where

Πχ
ϕ = ∑

s
ms

∫
dτ∗F̄uϕvχ

G ; Tχ
ϕ = ∑

s
es

∫ χ
dχ
∫

dτ∗F̄∂ϕ φ̄ ; J = ∑
s

es

∫
dτ∗vχ

GF̄ (4)

where vχ
G = ż ·∇χ is the guiding-center toroidal velocity in conventional contravariant notations,

which contains contributions from both the E×B drift and the magnetic drifts. Eq. (3) is an exact

equation for gyrocenter momentum in the sense that, once the gyrokinetic model is given, no

additional approximation is required.

The tensor Πχ
ϕ is the off-diagonal (ϕχ) component of the conventional Reynolds stress. The

interpretation of the second term, which can be written as the divergence of a flux by using the

Hermitian property of the gyroaverage, is less straightforward. Using a Padé approximation of

the gyroaverage operator, one can show3 that this term contains the polarization stress identified

by McDevitt et al.4, corrected by finite Larmor radius (FLR) effects.

The term on the right-hand-side in Eq. (3) corresponds to a radial current of gyrocenters.

It appears as a source in this equation. It actually describes the exchange of momentum be-

tween gyrocenters and the electromagnetic field. An evolution equation can be derived for the

polarization σ , which corresponds to the field momentum in the Minkowski formulation. This

is simply ∂tσ = −J . Thus the conservation equation for the total toroidal momentum, i.e.
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including field and gyrocenter contributions, reads ∂t(Lϕ + σ) + ∂χ(Πχ
ϕ + Tχ

ϕ) = 0 and does

not contain any volume source term, as it should. This formulation is consistent with previous

results by Scott5 and Brizard6.

Gyrokinetic simulations of turbulent toroidal momentum transport

The conservation equation derived in the previous section has been tested numerically using

the gyrokinetic code GYSELA in the flux-driven regime2. For a simulation with the normalized

radius ρ∗ = 1/512, which is close to the value expected for ITER, a precision of approximately

1% was obtained for the momentum balance7. This result demonstrates that gyrokinetic codes

are capable of accurately describing the transport of toroidal momentum.

Considering more precisely the relative amplitude of the terms in Eq. (3), we find that the

Reynolds stress (Πχ
ϕ ) is the dominant contribution to the local balance of toroidal angular mo-

mentum. The polarization stress (Tχ
ϕ ) also contributes significantly, while the radial current of

gyrocenters (J ) is negligible (approximately 0.1% of the total magnitude), as expected for

simulations with adiabatic electron response.

These important results allows us to investigate the generation of intrinsic rotation by tur-

bulence in gyrokinetic simulations. We present the result of a simulation for ρ∗ = 1/512. No

momentum source was prescribed in the system. The time trace of both the parallel flow and
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Figure 1: Nonlinear simulation with ρ∗ = 1/512 and ν∗ = 0.1. (a) Time evolution of the flux-surface averaged
toroidal flow and turbulent heat flux at mid-radius; (b) Cross-correlation in two dimensions (radius and time) of
turbulent heat flux and Reynolds stress

turbulent heat flux at mid-radius is shown on Fig.1(a) From a near-zero initial value, the velocity

grows exponentially during the linear growth phase of the instability and then fluctuates dur-

ing the saturated turbulence regime. The exponential growth of the toroidal velocity generates

a dipolar structure for toroidal momentum3, reflecting the global conservation of momentum

in the system. During the steady-state regime after the saturation of turbulence, one can inves-

tigate the statistical behavior of turbulent momentum transport. As presented in Fig.1(b), the

cross-correlation of turbulent heat flux and Reynolds stress reaches values above 0.6, highlight-
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ing a strong correlation between heat and momentum transport. Moreover, the clear elongated

structures in Fig. 1(b) indicate that the avalanche-like events governing radial heat transport in

flux-driven gyrokinetic simulations2 also transport toroidal momentum.

Because the dynamics of toroidal momentum transport are governed by a local conservation

equation, boundary conditions are the only possible source of net momentum generation. Ex-

perimentally, the issue of the impact on core rotation of scrape-off-layer (SOL) flows, which

correspond to boundary conditions in core plasma simulations, is an active area of research8.
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Figure 2: Final (solid) and initial (dashed)

toroidal velocity profiles for three simulations with

various boundary conditions (ρ∗ = 1/64)

In the simulations described above, boundary

conditions are such that the toroidal flow is vanish-

ing at the outer boundary (“no-slip”) of the simu-

lation domain and has a vanishing radial gradient

at the inner boundary. These boundary conditions

can be modified in GYSELA to assess the penetra-

tion of SOL and edge flows. We present here sim-

ulations at ρ∗ = 1/64 where different values were

imposed for the toroidal flow at the outer bound-

ary, −0.1, 0 and 0.1 as apparent in Fig.2. For the

three simulations, the initial profiles are plotted in dashed lines while the solid lines correspond

to the steady-state profiles. It appears that, once steady-state has been reached, the three rotation

profiles have different values but roughly the same shape inside r/a ' 0.55. In particular, this

implies that the shear of the rotation profile in the core is comparable for all three simulations.

In conclusion, a local conservation equation for toroidal angular momentum is derived for

the gyrokinetic model. This equation is verified numerically with the gyrokinetic full- f code

GYSELA. Turbulent generation of intrinsic toroidal rotation, via the turbulent Reynolds stress,

is observed in simulations. Toroidal momentum transport is found to be strongly correlated

to heat transport and exhibits intermittent avalanche-like events. Finally, preliminary results

suggest that edge flows set the magnitude of the toroidal rotation but have a reduced impact on

its shear in the core.
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