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1. Introduction 

Neoclassical Tearing Mode (NTM) is a type of resistive instability, which can significantly 

degrade confinement and set a limit on achievable plasma beta. The temporal behavior of the 

NTM is governed by the Modified Rutherford Equation (MRE) [1]. The MRE estimates the 

growth rate of an island width and analyzes the stability of the NTM. There are different 

forms of MRE although they have the same physical approach to form each term basically, as 

follows: !!
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In this work, we focused on a simplified form of the MRE. The MRE with the effect 

of ECH is solved against TCV experimental data using ASTRA in time-dependent 

simulations. The geometrical parameters in the MRE are defined and calculated from 

experiment. They are adapted to predict the island width correctly for the simulation using 

ASTRA. The calculated !(!) is compared and validated against experiments. Based on the 

results, the MRE will be applied to ITER plasmas for predicting the behavior of NTMs. 

 

2. The ECH effects into the MRE in the ohmic condition 

The NTM experiments on TCV (pulse 40539 and 40543) [5] showed that the efficiency of the 

NTM suppression is dominated by the heating in the island. This is consistent with the 
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relatively low current drive efficiency under the conditions of the TCV experiments and the 

very off-axis of the q=2 position. The pulses used in this work are almost the same except the 

applied EC power. 

Control and suppression of the NTM can be achieved by means of localized co-current 

drive and heating at the island location using the electron cyclotron waves (ECWs) in 

previous theoretical and experimental work [2, 4, 6, 7]. The term in the MRE focused on the 

contribution of heating as well as current drive [8] can be given by the function depending on 

the normalized island width !∗ = ! !!"#, the misalignment !!"# = !!"# − !! and the power 

on-time fraction ! of ECWs: !!∆!,!"! = !"!!!!!!!,!"
!!!!!,!"

! !!,!" !∗, !!"#,! . The term related to 

the ECH effect is added to the MRE in previous section according to the relation between the 

EC terms. 

The time evolution of the 

island width measured in the 

experiment is shown in figure 1, 

as well as the EC power 

applied at the q=2 surface. In 

pulse 40539, only 210 kW is 

applied and the island width 

measures from 5 cm to about 3 

cm. In the second case, pulse 

40543, 550 kW is applied and 

the mode is fully stabilized [5]. 

On the other hand, the mode 

appears at 0.3 s, and stays 

saturated up to 0.9 s in ohmic 

conditions. In this case the 

perturbed bootstrap current is too small to be the main drive of the mode. The mode is a 

classical tearing, due to an unstable current density profile, and therefore we have to write 

Δ!! !! in the following form: Δ!! = Δ!!! − !". This was already discussed in [9] for other TCV 

discharges. In this case, Δ!!!  is positive and triggers the mode unstable while ! is stabilizing 

because of the modification of the equilibrium current density due to the mode. In order to 

have stabilization at small island width, we need to keep the Glasser-Green-Johnson (GGJ) 

term [10]. We also keep the bootstrap term since it can increase when heating is added. 

#40539	  

#40543	  

Figure 1. The time evolution of the island width measured in the 
experiment on TCV: the measured island width (black), the EC 
power injected (yellow). (a) partially stabilization of (2,1) NTM, (b) 
fully stabilization of (2,1) NTM. 
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Therefore, the MRE that was used in this study has the following form: 
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The experimental result determine the ratio Δ!!! /! ≅ !!"# in the ohmic phase which is 

about 5 cm (very near the distance between the q=2 radius and the plasma edge). Most of the 

other parameters, which can evolve in time, are calculated self-consistently by the ASTRA 

simulation. In addition we add a flattening, within the simulation, due to the presence of the 

island proportional to the actual island width. The other terms, which are constant in time and 

are the same for the two simulations are:  

Δ!! = 0.53, ! = 11, !! = 1.6, !!!" = 0.14, !! = 5, !! = 0.07  !. 

We have compared !!!" and !!" (!!) with the expression given in [11, 12], calculated 

using a TCV equilibrium, and they are very similar. 

The ASTRA code [13] is coupled with the TORAY code [14], using the TCV launcher 

geometry, and it calculates the effective heat and current drive deposition profiles during the 

simulation. The simulation starts 

at 0.2 s with the plasma profile 

from experiment and the seed 

island is forced to appear with 2 

cm at 0.3 s. After the seed island 

appears, the subroutine for 

solving the MRE is executed to 

calculate the island width for the 

next time step. 

The results are shown in 

figure 2, where we see a good 

agreement could be achieved. 

The seed island increases with a 

large growth rate until it 

saturates island width due to the conventional driving term. The island growth rate can be 

changed according to the plasma condition but it seems to be zero until the EC power is 

injected at 0.9 s. The saturated island width is decreased rapidly after the EC power is injected. 

As seen in the MRE, EC power can affect the growth rate of island width. Because of 

relatively small EC power, the island is not suppressed but is saturated again with the reduced 

#40539	  

#40543	  

Figure 2. The time evolution of the island width simulated using 
ASTRA: the simulated island width (blue). (a) partially 
stabilization of (2,1) NTM, (b) fully stabilization of (2,1) NTM. 
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island size for pulse 40539 while the island is fully suppressed for pulse 40543. 

 

3. Summary and Future work 

The control of NTM by ECH is simulated using a transport code, ASTRA, coupled with 

TORAY for ECH and CD calculations and a subroutine of MRE solver. The pulses on TCV 

simulated in this work have two characteristics: one is the NTM triggering in ohmic phase, 

which has too small bootstrap current to drive the mode. The other is the NTM suppression by 

the ECH effect. The terms of the MRE is changed in order to describe NTM in ohmic phase 

as well as the term related to the ECH effect is added to the MRE. By the change of EC power, 

the growth rate of island width is affected. The time trend of island width simulated with this 

MRE is good agreement with experiment. 

In this work, we focused on a simplified MRE. Although it shows good agreement with 

experiment, we need more precise model for describing the behavior of the island width. As 

mentioned in section 1, there is more complicated type of MRE without considering ECH 

effect. By adding the ECH term, the more complicated MRE can be written: 
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With this MRE, calculation of the growth rate of island width can be expected with little 

variation of the constant across different tokamaks. Moreover, the MRE also can be applied 

for NTM simulation on ITER plasmas, once the above equation has been validated with other 

tests. 
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