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Non-inductive drive mechanisms help to sustain the plasma current for longer pulses with
small or negative inductive drive where zero current densities and current holes are observed [1,
2] and during slow transitions from positive to negative plasma current [3, 4]. A relevant ques-
tion arising from this situations is that of the structure of the equilibrium magnetic field when
the toroidal current density becomes negative in some region inside the plasma. Different nu-
merical and analytical works [5, 6, 7, 8] have asserted that internal current density reversals lead
to non-nested magnetic surfaces.

In the following, we show that, for current density reversals, the nested topology is an un-
likely degenerated situation for two-dimensional plasmas. Then we demonstrate that non-nested
topologies define several current channels inside the plasma, where the positive current has
about twice the magnitude of the negative one. This result is obtained by the introduction of
an anisotropy parameter that is related to the geometric properties of the equilibrium. To il-
lustrate such relation we develop a local description of the magnetic field with two geometric
parameters. The solution is obtained without specifying further plasma profiles or arbitrary
functions and is valid in a region of interest where the toroidal current density is both positive
and negative. The obtained configurations agree with several published topologies [5, 6, 7, 8]
and allow to identify transitions between different magnetic configurations through changes in
the anisotropy.

In usual axisymmetric equilibrium the magnetic field lines remain attached to magnetic sur-
faces forming nested tori inside the plasma. The total current flowing inside a torus labeled by
its poloidal magnetic flux ψ , is obtained from the Ampère’s law as

µ0It(ψ) =
∮

Γψ

~B ·d~l =±
∮

Γψ

|∇ψ|dl
R
, (1)

where it was used that ∇ψ×∇φ is the poloidal magnetic field and φ is the azimuthal coordinate.
In eq. (1), d~l follows clockwise the magnetic circuit Γψ , obtained from the intersection of the
torus ψ with any azimuthal plane φ = const. The current is negative when ∇ψ is inwards
and positive otherwise. The presence of both positive and negative current densities suggests
that some torus ψ0 contains a net vanishing current. From (1) this would require |∇ψ| = 0 in
every point of the circuit Γ0 = Γψ0 . As a consequence, for any pair of coordinates {u,v} in a
plane φ = const., the equation ∂uψ(u,v) = 0 must lead to the same curve that ∂vψ(u,v) = 0. In
addition, the curve must satisfy ψ(u,v) = ψ0. This degeneracy is possible for one-dimensional
problems, but is structurally unstable in two-dimensions [7]. In other words, the usual nested
topology is not compatible with current density reversals in two dimensions.
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A more feasible configuration requires the existence of saddles in the poloidal flux and a
separatrix Γs. Each saddle leads to a poloidal field inversion without requiring a degenerated
torus. The magnetic topology depends on how the separatrix Γs connects two branches of the
same hyperbolic point when followed smoothly. If Γs connects two non-opposite branches of
any saddle the total number of saddles is odd (Fig. 1a); otherwise is even (Fig. 1b).

Figure 1: (a-b) Separatrix for odd and even systems of axisymmetric islands respectively. Branches of
the saddle P with corresponding diamonds are connected smoothly by the separatrix Γs. (c) Splitting
of the i’th positive channel into its half-currents by the curve γ . (d) Decomposition of a separatrix into
simple circuits and the regions for the currents in (2). Open and filled arrows show the circuit orientation
and the direction of ~Bp respectively and white arrows show the direction of the total current for each
channel.

The separatrix defines several families of nested magnetic surfaces, each working as a current

channel inside the plasma. In Fig. 1a-b the poloidal field direction reveals the direction of the
toroidal current inside each channel. It is clear from (1) that a magnetic surface just enclosing all
the channels has a finite positive current, meaning that the total current in the positive channels
must exceed the current of the negative one. To evidence this we build a curve γ orthogonal to
the magnetic field (Fig. 1c) passing through every hyperbolic and elliptic point that defines the
positive current channels (Fig. 1d). The curve γ divides in two the positive channels and since∮

γ
~Bp · d~l = 0 it contains a vanishing current. By decomposing the separatrix Γs into a pair of

simple circuits {Γ1,Γ2} (Fig. 1d) it can be shown that

−
∮

Γ1

Bpdl = ∑
i

Ii
1 ≡ I1 ,

∮
Γ2

Bpdl = ∑
i

Ii
2 ≡ I2, (2)

where Ii
1,2 is the current flowing through the region limited by γ and Γ1,2 in the i’th positive

channel (Fig. 1c). The i’th positive current is Ii = Ii
1 + Ii

2 and the relative difference between
its components ηi = (Ii

2− Ii
1)/Ii, measures its anisotropy. The current inside all the positive

channels is I+ = I1+ I2 and the current in the central channel is I− =−I1. Introducing the mean
anisotropy η = ∑i ηiIi/∑i Ii and using (2) we obtain

I+ =
2

1−η
|I−|. (3)

For monotonic variation of the current density we expect 0≤ ηi < 1, leading to I+ > 2|I−|. This
reveals that the combined channels I++ I− carry a net positive current larger that |I−|.

To study the size and number of magnetic islands in terms of the anisotropy, we need to
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put η in terms of other parameters of the equilibrium. For this, we develop a local solution
that accounts for the non-nested topology while keeping a simplified physical picture of the
equilibrium. From (1) and ∇×~B = µ0~j it can be verified that

R∇ · (R−2
∇ψ) =−µ0 jφ . (4)

For a single-fluid MHD equilibrium [9] the current density may be put in terms of two surface
functions, leading to the Grad-Shafranov equation [10, 11]. Since the expected equilibrium
processes more than one magnetic family, establishing a single form of the pair of surface
functions may not be appropriated, however, there are results in this direction exhibiting current
inversions [5, 6]. Formally, a broad range of surface functions may lead to current reversals and
non-nested surfaces, but the underlying description of the equilibrium topology is not restricted
to the particular model. We can cover a wide range of arbitrary choices by imposing existence
of a small negative minimum of the current density.

For a hollow-current profile the negative current density, if any, should be small. Assuming
up-down symmetry about the minimum, we can write the current density as jφ = j0 + ι(r2−
κr2 cos2 θ), with j0 < 0 and (r,θ) local polar coordinates. The parameters ι and κ define the
curvature and ellipticity of j(~r) about the minimum. We define a region of interest with radius
a =

√
−2 j0/ι , where the poloidal field reverses in the cylindrical case. Provided that a is small

we can solve (4) by a local scheme analogous to the successive approximations method [9]. In
our case the inverse aspect ratio ε = a/R0, is a reliably small parameter defined from the region
of interest instead of the plasma radius. Defining R = R0+ax and z = ay we can write (4) about
the current minimum in dimensionless form(

∂
2
x +∂

2
y −

ε

1+ εx
∂x

)
ψ = (1+ εx)(1−2r2 +2κx2), (5)

with r measured in units of a and ψ in units of µ0| j0|a2R0. The solutions of (5) will depend on
κ and ε , allowing a detailed study of the bifurcations that change the topology of the magnetic
field. Writing the nondimensional flux as ψ(r,θ) = ψ0(r)+ εψ1(r,x)+O(ε2) and excluding
the ellipticity in the zero-order calculations we can derive the poloidal flux function to the first
order in ε .

ψ(r,x) =
(

1− 1
2

r2
)

r2

4
+ εx

(
1− 5

9
r2
)

3r2

16
+

κ

6
x4. (6)

In Fig. 2 we plot the level sets of ψ obtained from the local solution (6) for different ellipticities.
The condition for off-axis critical points |xc|< rc leads to |κ|& ε/8, from which we obtain the
bifurcation values depicted in Fig. 2-right. As the ellipticity and toroidicity are equilibrium
parameters, they are related in a continuous way to the anisotropy η , defined before (4). In
Fig.3-left is clear that increasing the elongation leads to a growth of the anisotropy and the
toroidicity gives an implicit anisotropy to the system. Consequently, η only vanishes in the
cylindrical case and never becomes negative, so it verifies I+ > 2I−. During the bifurcation at
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Figure 2: Levels sets of ψ from (6) for ε = 0.1 and different ellipticities κ . In the rightmost frame we
illustrate the change of the equilibrium topology in the parameter space.

κ = ε/8 a zero-current island is created leaving η stationary (Fig. 3).
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Figure 3: Change in the anisotropy η as a function
of the ellipticity κ for different values of ε (left).
Intrinsic anisotropy due to the toroidicity with zero
ellipticity (right). The gray region is about the bi-
furcation value κ = ε/8 where η is stationary.

In summary, the magnetic topology related to current density reversals defines several current
channels within the plasma. The ratio between the current in the positive channels and the
central negative current depends on a topological parameter measuring the anisotropy of the
positive channels. In general terms the positive current is about twice the size of the central
negative current causing the screening of this channel and forming a structure with net positive
current. The anisotropy was shown to be related to the geometrical properties of the equilibrium
for a local solution of the equilibrium.
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