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Abstract

Blended finite element (FE) methods combine high-order continuous and discontin-

uous spatial representations to exploit the expected physical behavior of the plasma dy-

namics. High-order accurate FE methods benefit problems that have strong anisotropies,

complicated geometries, or stiff governing equations. The method is applicable to contin-

uum models, such as continuum kinetic and multi-fluid plasma models. Discontinuous and

blended FE methods are implemented in a flexible code framework, WARPX. The algo-

rithm is applicable to study advanced physics calculations of plasma dynamics including

HEDP, magnetic plasma confinement, and astrophysical plasmas.

Owing to the complexity of plasma phenomena, a thorough understanding requires validated
physical models, verified computational simulations, and well-diagnosed experiments. This pa-
per focuses on developing computational methods for plasma models with sufficient physical
and numerical fidelity to generate insight and predictability.

Continuum Plasma Models
Discrete models that account for each constituent particle is not particularly useful for the

numerical treatment of realistic plasmas where the number of particles (N) and the number of
interactions (> N2) is not computationally tractable. Instead an ensemble average is performed
to give a statistical description. Plasmas may be most accurately modeled using kinetic theory,
where distribution functions, fs(x,v), are governed by a Boltzmann equation
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for each species s. Combined with Maxwell’s equations, the system leads to the continuum

kinetic plasma model. Kinetic models in their most general form are six-dimensional, but re-
duced models, e.g. gyrokinetic, can also be meaningful. Further reduced plasma models result
by taking moments over velocity space of Eq. (1) and of fs, the multi-fluid plasma model.[1]

The principal variables of the multi-fluid plasma model are derived from moments of the dis-
tribution functions. The 5M model directly evolves the variables given by the first two moments
and the tensor contraction of the third moment,

ps = ρsTs =
1
3
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∫
w2 fs(v)dv, (2)

where Ts is the temperature. The 13M model[2] directly evolves the variables given by the first
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three moments and the tensor contraction of the fourth moment,

hs =
1
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∫
w2w fs(v)dv. (3)

The system of moment equations is truncated, retaining only variables with a physical meaning,
and closed by relating higher moment variables to lower moment variables.

Fluids are coupled to each other and to the fields through Maxwell’s equations and interaction
source terms. Including elastic scattering and reacting collisions (e.g. ionization, recombination,
charge exchange) introduces additional source terms. For example, the electron momentum
equation for an interacting three-fluid model (electron, ion, neutral) is given by
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where the source and sink rates are computed by the appropriate convolution integrals, such as
the ion source rate from electron impact ionization with neutrals
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See Ref. [3] for the details of the 5M multi-fluid plasma model. Additional moment models can
be found in Refs. [1, 4, 5, 6].

Table 1: Typical plasma time scales (secs)

FRC F Region

1/ωpe 5×10−14 6×10−8

L/c 3×10−9 7×10−2

1/ωci 10−8 4×10−3

L/vA 10−5 3×101

τeq 10−3 105

The governing equations for the 5M or 13M

model can be expressed in balance law form
as

∂

∂ t
q+∇ ·F = S, (6)

where q is the vector of conserved variables,
F is the flux tensor, and S is vector of source
terms. Eigenvalues of the flux and source Ja-
cobians (∂F/∂Q, ∂S/∂Q) provide the characteristic speeds and frequencies. Table 1 shows
typical time scales for a laboratory FRC plasma and an ionospheric F region plasma. The large
time scale separation makes the system mathematically stiff and complicates accurate solution.

Finite Element Methods
Finite element (FE) methods offer high-order spatial accuracy in an unsplit approach that

tightly couples the flux and source terms in Eq. (6). FE methods are appropriate for problems
that have strong anisotropies, complicated geometries, or stiff governing equations. Magnetized
plasma simulations of realistic devices using the continuum kinetic or the multi-fluid plasma
models benefit from high-order accuracy. FE methods expand the solution vector using a set of
basis functions, vk(r), and project the governing equations onto the same basis functions using
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a Galerkin method. Integrating by parts and applying the divergence theorem gives
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The domain is divided into finite elements, and the integral equation is applied to each element
with some assumption of continuity at the element boundaries.

If the solution is assumed to be continuous, the result is the usual finite element method,
which works well for many elliptic and parabolic systems on complicated geometries; however,
spurious oscillations can occur at discontinuities (shocks) for hyperbolic systems, which means
the method is not suitable for many plasma simulations.

If the solution is allowed to be discontinuous, but with continuous fluxes as required by
the conservation law, the resulting finite element system is the discontinuous Galerkin (DG)
method.[7, 8] Fluxes in the surface integral term in Eq. (7) are evaluated using an upwind
method such as an approximate Riemann solver[4, 9].
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Limiting is accomplished by locally reducing the expansion order. Time is advanced using a
Runge-Kutta method, for example the third-order, TVD method.[10]

Blended FE methods combine high-order continuous and discontinuous spatial representa-
tions to exploit the expected physical behavior of the plasma dynamics with improved com-
putational efficiency. The blended FE method has been implemented in a flexible code frame-
work, WARPX (Washington Approximate Riemann Plasma code)[1]. The code runs on multi-
processor machines using MPI and on GPU systems using OpenCL.

Numerical Results
The DG method has been applied to solve the Vlasov-Poisson model. The solution of the

continuum kinetic model has been benchmarked to weak and strong Landau damping and to the
two-stream instability.[11] Figure 1(a) shows the simulation results at ωpt = 60, using 20×80
elements and 7th order polynomials in (x, vx). The high-order representation accurately captures
the fine-scale striations the occur in phase space.

The blended FE method has been applied to the two-fluid, electromagnetic plasma shock
problem[4], a generalization of the MHD shock problem[12]. A continuous FE representation
is applied to the electron fluid and to the electric and magnetic fields, and a discontinuous
FE representation is applied to the ion fluid. The solution using 2nd order elements with 512
elements is shown in Fig. 1(b). The solution compares well with the solution from a DG method.

Conclusions
Plasmas are accurately described with continuum models: from detailed kinetic models to

5M and 13M moment models. This paper highlights developments in high-order techniques for
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Figure 1: Numerical results: (a) Strong Landau damping using 7th order discontinuous FE rep-
resentation to accurately capture fine-scale striations in phase space. (b) Electromagnetic shock
tube problem solved with the blended finite element method.

solving these systems of equations so as to create high-fidelity methods that are better able
to capture complex plasma physics phenomena. Coupling these models to high-order spatial
representations leads to numerical algorithms that capture appropriate physical phenomena.
Specifically, the continuous and discontinuous FE methods have been blended to provide a
physics-based numerical approach. The blended FE method and the various plasma models
have been implemented into the WARPX code and have been validated to analytical results and
benchmarked to published computational results.
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