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Introduction: Heavy impurities originating from plasma facing components are typically not

fully ionised in the core of fusion plasmas. Their central accumulation must be avoided, as

power balance could not be maintained in the presence of the strong resulting radiation losses.

Neoclassicaltemperature screeningis the outward drive of the flux of impurity ions due to the

main ion temperature gradient, which is known to occur in a tokamak. Thought to be absent

in stellarators, we have shown [1] that it can appear in mixedcollisionality plasmas, that is a

plasma in which a heavy, highly charged and thus collisional, impurity is present in a low col-

lisionality bulk plasma, where the main ions are in either ofthe 1/ν or
√

ν regimes. Stellarator

transport is not intrinsically ambipolar. An inward radialelectric field is expected to develop in

hot, low collisionality plasmas, and drive a strong inward flux of highly charged impurities [2].

This drive was found to vanish in the mixed collisionality plasma when the bulk ions are in the

1/ν regime, and to be potentially weak in hotter plasmas where the bulk ions are in the
√

ν

regime, particularly if the magnetic field geometry is well-optimised.

Formulation: The neoclassical radial flux of a heavy species, with massmz, densitynz and

chargeZe, across nested magnetic flux surfaces in a mixed collisionality plasma is predom-

inantly driven by parallel friction against the bulk ions (denoted by subscripti, chargee),

Γz =
〈

fz(vdz·∇r)d3v
〉

=
〈

uBRzi‖
〉

/Ze, when the following condition on collisionality is sat-

isfied: 1≪ (ni/
√

Znz)ν∗zzν∗iz. Herer is an arbitrary radial coordinate labelling flux surfaces,

angled brackets denote a flux surface average, the collisionality ν∗ab = νab/ωta, whereνab is

the characteristic collision frequency between speciesa andb, ωta is the characteristic transit

frequency along the magnetic field andvdz is the magnetic drift of the impurities. The equilib-

rium functionu satisfiesb ·∇u=−b×∇r ·∇(B−2), with the integration constant set such that

u= 0 whereB= Bmax, the maximum field strength on the surface. The plasma confinement is

assumed to be sufficiently good for the ion species’ temperatures have equalised,Ti = Tz = T.

The friction is given by the linearised collision operatorRzi‖ =−Riz‖ =−mi
∫

v‖Cizd3v. This

can be determined analytically, as the disparate masses of the ions allow us to approximate

the linearised collision operator with the momentum restoring formCiz( fi) = ν iz
D(v)(L ( fi) +

2v−2
Ti v‖Vz‖ fMi

)

, whereL is the pitch angle scattering operator, the thermal speed isvTi =
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√

2T/mi, the deflection frequency isν iz
D(v) = 3π1/2/4τizx3

i = ν̂ iz
D/x3

i , where the normalised

velocity xi = v/vTi and the collision timeτiz = 3(2π)3/2√miT3/2ε2
0/nzZ2e4 lnΛ. Incompress-

ibility of the leading order flow follows from the drift kinetic equation for each species, so the

parallel flow appearing here takes the general formnzVz‖ = (pz/Ze)A1zuB+Kz(r)B, where the

radial driving termA1z = d ln pz/dr + (Ze/T)dΦ/dr, with Φ the electrostatic potential. The

flux function Kz(r) is constrained by parallel momentum balance at zeroth orderin the high

collisionality expansion of the impurity drift kinetic equation, which sets
〈

BRzi‖
〉

= 0.

The piece of the bulk ion distribution function which is odd,f−i , with respect to the parallel

velocity is needed to evaluate the parallel friction. A formalism by which this can be determined

throughout the 1/ν and
√

ν regimes was recently presented for a pure plasma in [3], and can be

readily extended to account for the presence of an impurity.The bulk ion drift kinetic equation is

split into pieces which are even and odd inv‖, and the line integral of the even equation formally

gives f−i (r,α, l ,ε,µ,σ)=
∫ l

l0

[

C+
i ( fi)−vdi ·∇ f+i

]

dl′/v‖+X (r,α,ε,µ,σ), wherel is the length

along a field line,α labels field lines on a surface, and the velocity space coordinates are the

energyε, magnetic momentµ andσ = v‖/|v‖|. When the bulk ions are in the 1/ν regime, the

leading order even piece of the distribution is maintained near Maxwellian by collisions,f+ ≈
FMi. This is not the case in the lower collisionality

√
ν regime, where drift orbits can generate

loss regions and the plasma is not generally in local thermodynamic equilibrium. However,

it is known that confinement can be restored in the presence ofa sufficiently strong radial

electric field, creating a drift which can compete with the magnetic drift and keep the bounce-

averaged orbits close to a flux surface, or when the orbit averaged magnetic drift is made small

compared to the local value, by optimisation of the magneticfield. It is assumed that one of

these conditions holds, soΦ is a flux function,f+i ≈ FMi +F1, whereF1 ≪ FMi and the effect

of F1 principally appears in the trapped region of velocity space.

The odd piece of the distribution must vanish at a bounce point, thereforel0 is set to be

such a point in the trapped region of velocity space andlmax, whereB(lmax) = Bmax, other-

wise. The integration constantX then goes to 0 in the trapped region, and is set in the passing

region by the constraint resulting from the orbit average ofthe odd piece of the drift kinetic

equation,
〈

BC−
i ( fi)/v‖

〉

= 0. To evaluate this explicitly we need a form for the bulk ion self-

collision operator. We take it to have a momentum restoring form analogous toCiz, but allow

for the full energy dependent deflection frequencyν ii
D(v) = ν̂ ii

D [φ(xi)−G(xi)]/x3
i , whereφ(x)

is the error function andG(x) the Chandrasekhar function. The momentum restoring coeffi-

cientVi‖ appearing in place ofVz‖ is set by requiring momentum conservation in self-collisions:
∫

v‖Cii ( fi)d3v= 0.
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Results: With the model introduced above, the friction takes the formRzi‖=G1(r)uB+G2(r)sB+

G3(r)B, where the flux functionsVi‖ andKz only appear inG3. Applying the constraint
〈

BRzi‖
〉

=

G1(r)
〈

uB2
〉

+G2(r)
〈

sB2
〉

+G3(r)
〈

B2
〉

= 0, we see that we may eliminateG3, and thus do not

need to evaluateVi‖ or Kz explicitly. The radial impurity flux is then given by

Γz =
1
Ze

〈

uBRzi‖
〉

= − mi pi

Ze2τiz

[

1
Z

A1z

(

〈

u2B2〉−
〈

uB2
〉2

〈B2〉

)

−
(

A1i −
3
2

A2i

)

(

〈

u(u+s)B2〉−
〈

(u+s)B2〉
〈

uB2
〉

〈B2〉

)]

,

≡ nz
(

Dzi
11A1i +Dzz

11A1z+Dz
12A2i

)

, (1)

where the driving termA2i = d lnT/dr. The terms, originating in the trapped particle drift,

is zero in the 1/ν regime and with the velocity space coordinatesλ = µ/ε, ξ = ±
√

1−λB,

settingΦ = 0 on the surface of interest, it is given in the
√

ν regime by

s(l) =
3
2

∫ l

lmax

dl′
∫ 1/B(l ′)

1/Bmax

dλ
ξ (l ′)

ξ (b×∇r) ·∇
(

ξ
B

)

, (2)

where the overbar denotes an orbit average.

The impurity flux can be characterised in terms of the set of transport coefficientsD, defined

in the last line of eq. (1). We see that they are independent ofthe impurity content, up to an

overall density prefactor coming fromτiz. Note the appearance of the Pfirsch-Schlüter coef-

ficient, DPS= (miT/e2τiz)(
〈

u2B2
〉

−
〈

uB2
〉2
/
〈

B2
〉

) ≥ 0, which is seen to be sign definite by

the Schwartz inequality. ThusDzz
11 =−niDPS/Z2nz, and the impurity density gradient drives an

impurity flux in the opposite direction, as required by entropy considerations. When the bulk

ions are in the 1/ν regime,s= 0 andDzi
11 = −ZDzz

11. The flux driven directly by the electric

field thusvanishes. We also see thatDz
12 =−(3/2)Dzi

11, so there can be temperature screening,

giving an outward impurity flux whenηi ≡ ∂ lnT/∂ lnni ≥ 2. In the lower collisionality
√

ν

regime, the exact cancellation of the electric field drive coefficients is broken, leaving a drive

dependent on the geometry functions,
〈

usB2
〉

−
〈

sB2
〉〈

uB2
〉

/
〈

B2
〉

. This is not sign definite

and must be evaluated numerically for a given equilibrium, but we may expect it to be small in

a well-optimised device. The relationDz
12=−(3/2)Dzi

11 remains valid and so, depending on the

sign of the geometric factor, either temperature screeningpersists, or the typically inward bulk

ion density gradient will drive an additional outward impurity flux.

A recently developed numerical code, SFINCS, solves the drift kinetic equation with the full

linearised Landau collision operator, in general stellarator geometry, for an arbitrary number

of species [4]. The collisionality dependence of the transport coefficients of C6+ and Fe16+,
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Figure 1: Left: predictedL
zi
11 = (nzZe2τiz/mi pi)D

zi
11 (black) Er = 0 (dashed) and finite Er (solid)

compared to normalised SFINCS coefficients for Fe24+ in a H+ plasma with Ze f f = 1.07, L
zi
11 (red),

−2L
zi
12/3 (blue),−ZzL

zz
11 (purple). Right: Contribution to the Fe24+flux from dnz/dr (purple), dni/dr

(red), dTi/dr (blue),Φ′ (black). Profiles against square root of the normalised toroidal flux.

obtained with SFINCS for the standard configuration of W7-X, was presented in [1], support-

ing the analysis above. Here we have evaluated the radial profile of the transport coefficients

of Fe24+ in a low collisionality H plasma, with plasma profiles characteristic of those expected

in future high ion temperature discharges of W7-X [5]. The self-consistent electric field deter-

mined by a transport analysis is in the ion root, that is, pointing inwards across the discharge.

The results are shown in Fig. 1, and compared to the values predicted by eq. (1). Setting the

electric field to zero we see good agreement between the predicted and calculated profiles (the

flux driven by finiteA2z is small). The optimisation of W7-X means thats is small, and the re-

sulting small change in the predicted profiles is borne out bythe simulation. Note that turbulent

transport plays a role in setting the edge electric field, which may account for the distortion

appearing here near the edge.

Thus impurity accumulation may still be averted in stellarators, but the net predicted flux

depends sensitively on the plasma parameters and must finally be determined numerically. Note

that the analysis presented is also relevant to the study of impurity behaviour in a tokamak,

specifically in the core region where flux surface distortions commonly appear [6].
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