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Determining plasma flow to boundaries in cases when ion mean energies are com-
parable to, higher than or even considerably above the temperature of the main/bulk
electrons (usually Maxwellian) is a fundamental problem of plasma physics which,
however, has turned out to be extremely demanding to deal with, even when quite ele-
mentary physical and geometric assumptions and simplifications were made. Here we
present this problem starting from the one-dimensional time-independent Boltzmann
equation for the ion velocity distribution function (VDF) fi(x,v) in plane-parallel geom-
etry, v∂ fi

∂x −
e

mi

dΦ(x)
dx

∂ fi
∂v = S(v2,Φ), coupled with the Poisson equation d2Φ

dx2 = e
ε0

(ni−ne). This
system is to be solved in the plasma approximation, i.e., assuming strict quasineutral-
ity ni = ne, under symmetric boundary conditions holding at two perfectly absorbing
co-planar plates which are located at positions x = ±L and biased at the self-established
electric potential Φ(±L) ≡ ΦW. The electric potential Φ(x) is assumed to be monotoni-
cally decreasing in both directions from the point (plane) of symmetry satisfying x = 0,
Φ(0) = 0. The ion density ni =

∫
fi dv must equal the electron Boltzmann distributed den-

sity ne = neoeeΦ/kTe density, while the ion directional velocity, temperature, energy and
heat flux have to be calculated as the mth moments of the ion VDF,

〈
vm

i

〉
=

∫
fivmdv/ni.

It is convenient to normalize physical quantities as x
L ↔ x, ni,e

n0
↔ ni,e,

vi
cse
↔ vi,

ui
cse
↔ ui,

Ti
Te
↔ Ti, eΦ

kTe
↔ Φ = −ϕ, cse fi

n0
↔ fi, LE

kTe/e
↔ E and LS(v2,ϕ)

n0
↔ S(v2,ϕ), with e the positive

elementary charge, k the Boltzmann constant, cse ≡ (kTe/mi)1/2, mi the ion mass and
E =−dΦ/dx↔ dϕ/dx the electric field. For completeness we also introduce the smallness
parameter ε ≡ λD/L, where λD = (ε0kTe0/n0e2)1/2 is the electron Debye length, ε0 is the
"vacuum permeability", the vanishing of which is equivalent to the assumption of
strict quasineutrality. The ion source is modeled here according to the Bissell and
Johnson assumptions [1] Si = Rnnne0eβΦ/kTee−miv2/2kTn/(2πkTn)1/2, with the ionization
rate there proportional to ∼ nβe = eβΦ/kTe (cf. Harrison and Thompson [2]). Factor β can
take arbitrary values but here only the values β = 1 (after Bissell and Johnson [1])
and β = 0 (after Scheuer and Emmert [3]) are considered. The term Rnn [1] refers to
the ion creation rate with frequency νi = Rnn = cse/Li due to either ionization of gas
between the plates or due to inflow from a virtual perpendicular direction. The latter
scenario corresponds to application of the scrape-off-layer (SOL) [4] plasma model
with the warm ions originating from the plasma-core of a tokamak device. Note that
we here strictly distinguish between the source (neutral) temperature Tn and the self-
consistently established ion temperature Ti.

With these assumptions and definitions, the Boltzmann equation and its formal
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solution take the respective forms

v
∂ fi
∂x

+ E
∂ fi
∂v

= S(v2,ϕ) and fi(v,x)→ fi(v2/2−ϕ) = 2
∫ ϕW

0

dϕ′

E(ϕ′)
S(ϕ′−ϕ+ v2/2,ϕ′)√

2(ϕ′−ϕ+ v2/2)
,

where the electric field must be found from the quasineutrality condition
∫

fidv = e−ϕ.
Inserting the Maxwellian source into this condition and integrating over velocity space
yields the plasma equation and the ion VDF in the forms

L/Li
√

2πTn

∫ ϕb

0

dϕ′e−βϕ
′

e
ϕ′−ϕ
2Tn

E(ϕ′)
K0

(
|ϕ′−ϕ|

2Tn

)
= e−ϕ, fi =

L/Li
√

2πTn

∫
ϕ′

dϕ′e−βϕ
′

√
2E(ϕ′)

e
ϕ′−ϕ+y

Tn√
(ϕ′−ϕ+ y)

,

respectively, there, y = v2/2, K0 is the Bessel function of zeroth order, ϕb stands for
the boundaries of integration, which in the present case ε = 0 correspond to the

strictly quasineutral plasma edge (ϕPE), and is L
Li

= e−ϕW

√
mi

2πme

(∫ ϕW

0
e−ϕdϕ
E(ϕ)

)−1
as so-

called "ionization length", with the numerical values complemented by our fitting
formula Li/L '

(√
2πTn + 2−1 +β

)
/π2 presented in Ref. [5]. The domain of integration,

symbolically represented by
∫
ϕ′

, will be specified below. Note that L/Li can be manipu-
lated by changing the real or simulated lengths and properly renormalizing the electric
field.

Thus the key quantity for calculating the ion VDF and its moment turns out to be
the electric field E as a function of the potential. Since in the quasi-neutral plasma
E is rather small and, moreover, does not depend strongly on either potential ϕ or
position x, calculating the ion VDF as a function of ϕ via E(ϕ) as the main physical and
mathematical quantity (appearing in the unknown kernel of a complicated integral
equation) would require extreme efforts. Nearly complete numerical solutions of the
present problem, to be referred to as the Bissell and Johnson (B&J) model, have been
obtained with varied temperatures in a series of exhaustive works co-authored by the
present authors. However, we are aware that other authors can just employ these results
(e.g., in tabulated form, which we use to name "empirical") but cannot easily reproduce
them in any numerical or theoretical form convenient for application to further research.
Hence, we have propose an analytic solution to the B&J model, starting from the initial
assumption that 2Tn is fairly well above the maximum possible value of |ϕ′−ϕ|, such

that approximation K0

(
|ϕ′−ϕ|

2Tn

)
' ln

(
4Tn

γE|ϕ−ϕ′|

)
(where γE = exp(CE) = 1.78107 and CE =

0.57721... is the Euler-Mascheroni constant) holds. Then the above exact quasineutrality

condition takes the form L/Li√
2πTn

∫ ϕb

0
dϕ′e−βϕ

′

E(ϕ′) e
ϕ′−ϕ
2Tn ln

(
4Tn

γE|ϕ−ϕ′|

)
= e−ϕ, which can be instantly

solved via applying the Carleman inversion. This yields the electric field

L/Li

E(ϕ)
=

2Tn + 1
√

2πTn

e−
aϕb

2 e(β−1)ϕ√
ϕ(ϕb−ϕ)

eaϕF(ϕ,Tn) , (1)

where for brevity F(ϕ,Tn) ≡ 1

πe−a
ϕb
2

> ϕb

0

√
t(ϕb−t)
t−ϕ eat dt + 1

a lnFTn
I0

(
aϕb

2

)
and a ≡ a(Tn) = 1 +

1
2Tn

. The symbol
> ϕb

0 denotes the principal value, I0(z) stands for the zero-order Bessel

function, and FTn ≡
16Tn
γEϕb

. It has been shown in Ref. [6] that the solution Eq. (1) perfectly
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fits the exact numerical results for Tn ≥ 3, while for lower temperatures, Tn < 1, the
present quasi-analytic results considerably deviate from exact ones.
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Figure 1: Checking the approximation
eaϕ

ϕb
F(ϕ,Tn) ' − ϕ

ϕb
+ 1 for illustrative values of Tn.

When applying the numerical method, a
breaking solution appears for a certain po-
tential ϕb(Tn), for which the electric field
diverges. The theoretical approach, in con-
trast, consists in finding ϕb(Tn) from the
condition F(ϕb,Tn) = 0 and inserting the
resulting value into Eq. (1) for obtaining
1/E(ϕ,Tn). For this purpose we note that
the first term in F(ϕ,Tn) at the points ϕ = 0
andϕ=ϕb reduces to ϕb

2 I1

(
aϕb

2

)
±
ϕb
2 I0

(
aϕb

2

)
,

where the positive and negative signs corre-
spond to the valuesϕ= 0 andϕ=ϕb, respec-
tively, and I1(z) is the first-order Bessel function of the argument z. We denote F(ϕ,Tn)
at the points ϕ = 0 and ϕ = ϕb as F± =

ϕb
2

[(
2

aϕb lnFTn
±1

)
I0

(
aϕb

2

)
+ I1

(
aϕb

2

)]
, respectively.
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Figure 2: The electric-field profiles

For realistic Tn, the plasma potential
is limited between 0 < ϕ < ϕb(Tn), where
∼ 0.25 ' ϕb(100) < ϕb(Tn) < ϕb(0) = 0.854
(see the exact results, e.g., in Ref. [5] or
use our approximate formula ϕb0 = ϕPE '

1/ ln(
√
πT3/4

n +π)), while a ≡ a(Tn) = 1 + 1
2Tn

in the range of validity of Eq. (1) is slightly
above unity, so that the argument of the
Bessel functions, aϕb/2, is well below unity
and thus I0

(
aϕb

2

)
' 1, I1

(
aϕb

2

)
' aϕb

4 . The re-
quirement that F(ϕ,Tn) vanishes at ϕb can
be satisfied for F− =

ϕb
2

[(
2

aϕb lnFTn
−1

)
+

aϕb
4

]
= 0. Here we note that it can be easily solved

as a quadratic (rather than transcendental) equation, yielding very precise values of
ϕb(Tn) provided that the approximate ϕb0(Tn) is inserted into lnFTn. More important
here is the fact that from F− = 0 we find 2

aϕb lnFTn
= 1− aϕb

4 , so that inserting this into F+ we
get F+ = ϕb as the upper limit of F(ϕ,Tn). Hence, the approximation F(ϕ,Tn) ' −ϕ+ϕb

is a plausible one, but we find that a perfect one for Tn > 3 requires the multiplicative
factor eaϕ, cf. Fig. 1, where we plot eaϕF(ϕ,Tn)/ϕb in comparison with −ϕ/ϕb + 1 for
several temperatures Tn ≥ 3. Since for lower temperatures the solution Eq. (1) diverges
we just illustrate the behavior of the new approximation −ϕ/ϕb− 1 and suppose that
it holds for any sufficiently high Tn. Equation (1) with eaϕF(ϕ,Tn) ' −ϕ+ϕb thus takes
the form

Li/L
E(ϕ)

= ATne(β−1)ϕ
√
ϕb−ϕ
√
ϕ

, with ATn ≡
2Tn + 1
√

2πTn
e−(1+ 1

2Tn )
ϕb
2 . (2)

At this point we recall that in our previous works (cf. Refs.[7, 5] and references
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Figure 3: Ion VDFs for Tn = 3 at several positions/potentials (a) and ion densities obtained from
n =

∫
f (v)dv for several source temperatures, as plotted in logarithmic representation, in comparison

with the Boltzmann electron density (b).

therein) we used instead of ATn a simple ’ad hoc’ approximation (ATn ' 27
√

Tn/40), the
relevancy of which can now be easily justified. The second improvement here is the
extension from β = 1 to arbitrary profiles 0 ≤ β ≤ 1 entering through the multiplicative
function e(β−1)ϕ.

In Fig. 2 we compare the approximate analytic electric fields as given by Eq. (2) for
three temperatures, with the numerical ones considered as the "exact" ones. In either
case the unique plasma-edge potential ϕ(Tn) as obtained from the numerical method
is used. The cases with exponentially decreasing (β = 1) and the "flat" (β = 0) source
profiles are presented. A relatively small deviation of the analytic profiles from the
numerical ones can be observed.

Introducing the inverse electric field Eq. (2) into the formal solution of the Boltzmann
equation, we obtain our ion VDF in the form

fi(v,ϕ) =
(2Tn + 1)e−(1+ 1

2Tn )
ϕb
2

2πTn

∫
ϕ′

√
ϕb−ϕ′√

ϕ′
√

2(ϕ′−ϕ+ v2/2)
e−ϕ

′+
ϕ′−ϕ+v2/2

Tn dϕ′ . (3)

The operator
∫
ϕ′

dϕ′ stands for five integrals, acting on the same function of argumentϕ′,

i.e., in the operator form:
∫
ϕ′

dϕ′ = h(−v)
∫ ϕb

ϕ
dϕ′+ h(−v)h(

√
2ϕ− v)

(∫ ϕb

ϕ− v2
2

+
∫ ϕ
ϕ− v2

2

)
dϕ′+

h(v−
√

2ϕ)
(∫ ϕb

0 +
∫ ϕ

0

)
dϕ′, where h(x) is the Heaviside step function of argument x. The

plasma-edge potential has to be determined with one of the methods referred to above.
In Fig. 3(a) we just illustrate the VDFs as obtained from integration of Eq. (3) for Tn = 3

at several positions/potentials. More important results, however, are the ion densities
n =

∫
f (v)dv for several source temperatures, as plotted in logarithmic representation

in comparison with the Boltzmann electron density in Fig. 3(a). As is obvious, the
quasineutrality is "perfect" (below a few of percent) for Tn > 1.5, while for lower Tn

the functional dependence ni(ϕ) starts to deviate from e−ϕ and the departure from
normalization ni(0) =

∫
fi(v,ϕ)dv = 1 for Tn < 1.5 becomes evident.
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